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1 Scientific Machine Learning

What, Why & How?

Outline 2 Lift & Learn

Projection-based model reduction as a lens
through which to learn predictive models

3 Conclusions & Outlook



Scientific Machine Learning

“Scientific machine learning (SciML) is a core
component of artificial intelligence (Al) and a
computational technology that can be trained,
with scientific data, to augment or automate
human skills.

Across the Department of Energy (DOE),
SciML has the potential to transform science
and energy research. Breakthroughs and major
progress will be enabled by harnessing DOE
Investments in massive data from scientific
user facilities, software for predictive models
and algorithms, high-performance computing
platforms, and the national workforce.”

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Core Technologies for Artificial Intelligence

Prepared for U.S.
Department of Energy
Advanced Scientific
Computing Research

U.S. DEPARTMENT OF

ENERGY




| Scientific Machine Learning

What role for model reduction?
1 reduce the cost of training 2 foundational shift in ML perspectives

Integrate
heterogeneous, noisy
& incomplete data

Embed domain
knowledge

Get predictions with
quantified
uncertainties

Respect physical Bring interpretability
constraints to results




| Predictive Digital Twin

via component-based ROMs and interpretable machine learning
ROMs embed predictive modeling and reduce the cost of training

Construct library of Use model library to
ROMSs representing train a classifier that
different asset states predicts asset state

based on sensor data

on“ne. sensor data
X == Analysis
A - e -’ /@ —*  Prediction
i == Optimization
/?Qﬂh — updated Digital Twin

current Digital Twin [Kapteyn, Knezevic, W. AIAA Scitech 2020]



Machine learning Reduced-order modeling

“The scientific study of algorithms & statistical “Model order reduction (MOR) is a
models that computer systems use to perform a technique for reducing the computational
specific task without using explicit instructions, complexity of mathematical models in
relying on patterns & inference instead.” [Wikipedia] numerical simulations.” [Wikipedia]

What Is the connection between reduced-order

modeling and machine learning?

Model reduction methods have grown from Computational Science & Engineering, with
focus on reducing high-dimensional models that arise from physics-based modeling,
whereas machine learning has grown from Computer Science, with a focus on creating
low-dimensional models from black-box data streams. [Swischuk et al., Computers & Fluids, 2019]



Machine learning Reduced-order modeling

“The scientific study of algorithms & statistical “Model order reduction (MOR) is a
models that computer systems use to perform a technique for reducing the computational
specific task without using explicit instructions, complexity of mathematical models in
relying on patterns & inference instead.” [Wikipedia] numerical simulations.” [Wikipedia]

Reduced-order modeling & machine learning:

Can we get the best of both worlds?

Discover hidden structure Embed governing equations
Non-intrusive implementation Structure-preserving
Black-box & flexible Predictive (error estimators)

Accessible & available Stability-preserving



1 Scientific Machine Learning

2 Lift & Learn Llft & Learn

3 Conclusions & Outlook Projection-based model reduction as a lens
through which to learn low-dimensional
predictive models



P, kPa

Lift & Learn: Ingredients , =

\ ¢ >.: ‘\")’?‘:; ‘\\ - NS MW 2600

2025
N 1 1450

875
— 300

YCH4
e 1
0.75
B 0.5

1. Aphysics-based model

Typically described by a set of PDEs or ODEs o s
P
2. Lens of projection to define a structure-preserving Rocket combustion
low-dimensional model
Temperature Order parameter

0.02
3. Non-intrusive learning of the reduced model ;s

0.02

[y

0.8 0.015

= 10.01
0.4
‘ 0
0.5 1

Solidification process in additive manufacturlng
10

= 0.01

4. Variable transformations that expose 0.005
polynomial structure in the model 0
— can be exploited with non-intrusive learning




Start with a physics-based model

Example: modeling solidification in additive manufacturing
Space/time evolution of temperature T and phase parameter ¢

T+ Lop=V.(K (¢)VT) J\
0’ =00 — ' (9) — q (T, ¢) R

W|th powder

K (¢) =Ko (1—h(9))+ Kih()
h(¢) = 6¢° — 15¢* + 10¢°

e
powder bed
/ .7  objectbeing

’ fabricated

1 2 8
p (¢) — Z@Q (]. - (rb) q (T, Cb) — §¢ (Cb - 1) tanh ['}/ (Tmelt - T)] powder delivery piston |
fabrication piston
Model based on Kobayashi, 1993; collaboration with Bao & Biros Figure from: https://www.bintoa.com/powder-bed-fusion/

discretized state x contains
Discretize: temperature and phase field

Spatially discretized . order parameter at
finite element model X =Ax+Bu+fi(xu) N, spatial grid points

N,~0(103 — 109)




high-fidelity physics-based simulation reduced-order model

1-Hi-B
+

dimension 103 — 10° dimension 10! — 103
solution time ~minutes / hours solution time ~seconds / minutes

Projection-based model reduction

1 Train: Solve PDEs to generate training data (snapshots)
2 ldentify structure: Compute a low-dimensional basis
3 Reduce: Project PDE model onto the low-dimensional subspace




Full-order model (FOM) % = AX + Bu ProjeCting a
state x € RV linear system

Approximate
X ~ VX,
V e RVXT

Residual: N eqs > r dof

r =Vx, — AVx, — Bu

Project

Wir=0

(Galerkin: W = V)
Reduced-order model

(ROM)
state x,- € R"

A, =VTAV

X, = A, X, +B,u B — VTR
.=




Linear Model Quadratic Model

FOM: X = AX + Bu FOM: x=Ax+H(XQ x)+ Bu

ROM: x, = A, X, + B,u ROM: x, = A, x, + H,(x, ® x,) + B,u

Precompute the ROM matrices: Precompute the ROM matrices and tensor:

A.=VTAV, B, =V'B H,=VTH(VRYV)

projection preserves structure <> structure embeds physical constraints



Operator inference

Non-intrusive learning of reduced models from
simulation snapshot data



Given reduced
State data,
learn the
reduced model

Operator Inference

using proper orthogonal
decomposition (POD) aka PCA

Peherstorfer & W.

Data-driven operator inference for
nonintrusive projection-based
model reduction, Computer
Methods in Applied Mechanics and
Engineering, 2016

X = AX + Bu+ HX @ %)

Given reduced state data (X) and derivative data (i):

| I |
X=|R(t;) .. R(tx)| X=[R(t) .. R(tx)

Find the operators A, B, H
by solving the least squares problem:

o~ o~ —~ ~\ | ~ -~ BN
min HXTAT +(XQ®X) AT+ UTBT — XTH
ABH
 Generate X data by projection of X snapshot data
onto POD basis

 If data are Markovian, Operator Inference recovers
the intrusive POD reduced model [Peherstorfer, 2019]

16
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Variable Transformations & Lifting

The physical governing equations reveal variable transformations and
manipulations that expose polynomial structure



There are
multiple ways
to write the
Euler equations

Different choices of
variables leads to
different structure In
the discretized system

o(P\ af FY
2l )+ pw?:+p | =0
L\ E Z\ (E + p)w

p 1
E=——q4=
v T

conservative variables
mass, momentum, energy

Define specific volume: q =1/,
doq _-10p -1

Take derivative: = o = 2

w
0 ap
—| P |+ — — 1 =0
6t<q> yp6‘z+waz
\ 0W+ d
qaz Waz

/ 6W+ ap\
Waz qaz
ow

specific volume variables

/ ow N dp
P 0z v 0z
o (P ow 10dp
—(W|+| we—+——|=0
dt p dz poz
\ dw N 9,
e 0z v 0z
primitive variables
mass, velocity, pressure
—p 2y B) = g2ty 0
0z 9z) 1oz 0z

x = Hx ® x) + Bu

transformed system
has quadratic structure

X, = Hr(xr X Xr) + B,u

ROM has quadratic structure s



Introducing auxiliary
variables can
expose structure

— lifting

[McCormick 1976; Gu 2011]

* original state s(x, t)
dimension d

* lifted state w(x, t)
dimension d,,

* lifted PDE has
guadratic form

Definition 1. Define the lifting map,
T:S s WcR™ d,>d,, (14)

and let w(x,t) =T (s(xz.t)). T is a quadratic ifting of eq. (1) if the following
conditions are met:

1. the map T is differentiable with respect to s with bounded derivative,
e, if J(s) is the Jacobian of T with respect to s, then

sup |7 (s)|| < ¢, (15)
385
for some ¢ = 0, and
2. the lifted state w satisfies
O = a(w) + hw) (16)
— = alw w),
ot
where
aq (w) hylw)
alw) = : : h(w) = : (17)
aq,, (w) ha, (w)
for some linear functions a; and quadratic functions h;, 7 = 1,2,...,d,.

[Qian, Kramer, Peherstorfer, W. Physica D, 2020]
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Introducing auxiliary
variables can
expose structure

— lifting

[McCormick 1976; Gu 2011]

Example: Lifting a
guartic ODE to
guadratic-bilinear form

Can either lift to a
system of ODEs or
to a system of DAES

Consider the quartic system =241 u

Introduce auxiliary variables: wy =% wy = w?

Chain rule: w1 = 2z[wi + u] = 2z[wy + u

Wo = 2 W1 = 433’EU1[’£U2 + ?,L]

Need additional variable to make auxiliary dynamics quadratic:

w3 = TWq w3 = TWi1 + rWq
= wWiWy + wiu + 2f_w1w2 + 2w u
QB-ODE
T = wg + u QB-DAE
w1 = 2xw9 + 22U i:w%—i—u

wo = dwows + 4dwsu 2

O0=w, —x

’U'Jg = 3w1w2 + 3101'&

20



Many different
forms of nonlinear

PDEs can be lifted
to polynomial form

[Khodabakhshi, W. In preparation.]

T+ Lop=V.(K(¢p)VT)

af?p = EAp —p' (¢) — q (T, )

l original equations

T+ Lé=V.(KVT)

3 1

0e2p = 2A¢ — g — B (p" - —) i

K

p

I

1

6 2

- ) feng 2 (- L) ]

a? 6

[€2A¢ —p — % (p” - %) mo]

2

) = a_§2p” [€2A¢ =R = % <p” - %) mo]

3

6 2

AT

cubic lifted equations

(20 — 1) [€2A¢ - (p” - 1) mo]



Nonlinear system for 1D solidification

T + LQ‘B =V.(K (¢)VT) Powdgr Eg‘(’,"de'

spreader
e 086 = 2A¢ —p/ (¢) —q(T'9)
Solidification of

a Pure Material with K (¢) = Ko (1= h(9)) + Kih(¢) |
h(¢) = 6¢° — 154 + 109" Mo‘%"xﬂ“‘

owder ¥ — New
p(o) = 76 (1—0) T

T DebRoy et al. Progress in Materials Science, 2018
b
[¢] q (T7 ¢) — §¢ (gb o 1) tanh [7 (Tmelt - T)]

22



Solidification of
a Pure Material

4

Nonlinear system for 1D solidification

T+ Ld=V.(K(¢)VT)

af’p=ENp—p (¢) —q(T,9)

with K (¢) = Ko (1 — h(¢)) + K1h (¢)

h(¢) = 64° — 150 + 10¢°
1

p(¢) = 76" (1-¢)

1(T,6) = 566~ 1) tanh [y (T, — 7))

Chain rule:
K = Ko[l —h(¢)] + Kih (o)

K= (K1 —Ky)h'(¢)¢

= 20— R0)rong yf (9) - o (T, )

a&?

23



Solidification of
a Pure Material

Nonlinear system for 1D solidification

T+Lo=V.(KVT)

0a?d = A —p' () — ¢ (T, ¢)
12006 - Ky) (EA¢—p' (¢) —q (T, 9)]

0(T,6) = £6(6— 1) tanh [y (Thway — 7)

Chain rule:

p=10*(1-9)°

p=1p (¢)d= a%p' A6 — ' () — ¢ (T, 9)

24



Solidification of
a Pure Material

Nonlinear system for 1D solidification

T+ Lp=V.(KVT)

at’¢ = EN¢—p' () — (T, ¢)
= R [eag -y (9) —a(10)

1
p= a—gpl A1 (¢) —q(T,¢)]

With g (7, 6) = 6 (6 — 1) tanh [ (Tosae — )
Chain rule:
Y =56 (1—0) (1-20)



Solidification of
a Pure Material

Nonlinear system for 1D solidification

T+ Lo=V.(KVT)
af’p=EAp—p' — q(T, ¢)

120 ({iz; KO)p [€2Aq§ —p' —q (T, qﬁ)}
1

D= Oz—pr’ D¢ —p —q(T,9)]

1
p = a—€2p” (EAp—p —q(T, )]

K =

with ¢ (T,6) = 56/(6 — 1) tanh [y (T, — T)]
Chain rule:
V=86 0) + 5

2
P =320 -1)d= — (26— 1) [Aé— ' — (T, )]

a&?
26



Solidification of
a Pure Material

Nonlinear system for 1D solidification

T+ Lo=V.(KVT)

a9 =06 - = 5 (1~ 3 ) mo (D)
: 120 (K1 — K 1
k= R0y feag = (- 5 ) mo ()]

p= a%gp’ [£2A¢ —p' - b (p” - 1) mo (T)]

p = a—ggp [§2A¢ —p' - b (p" — %) mo (T)]

§
: 3 1
b= o) [0y - 2 (4 - 5 ) mo (D)
Chain rule:

mo = tanh [y (Tierr — 1)
moz—v(l—mg)T
L B

e L [y

)



Nonlinear system for 1D solidification

T+ Lé=V.(KVT) Qualdratic
] / 5 7 1 .
Solidification of [ RS GEEILE Quaratc
a Pure Material jo - 120 <K1£ —Ko), [§2A¢ -0 ( " %) mO]
i
p= O%Qp’ [§2A¢ —p — % (p” — %) mo]
. . X, | 1| 2 / p 1 1
Original system: V= el [é Ap-—p - % (p = 5) mo]
. : 3 / .
T+ Lo=V.(K(¢)VT) p”=a—€2(2¢—1) [£2A¢—p—§( —§>m0]
20 2A W . 117
al"¢p =" A p(¢) Q( qb) moz—’}/y{V-(KVT)—&i&?[§2A¢_p/_§(p”_%>mol}
with original variables T, ¢ | Py gy Quadratic

with lifted variables T, ¢, K, p,p’,p"’, my, y

28



Lift & Learn

Variable transformations to expose structure
+ non-intrusive learning that frees us to choose our variables



Learning a
low-dimensional
model

Using only snapshot

data from the

original high-fidelity
model (non-intrusive)
but using variable
transformations to
expose and exploit
structure

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

Xorig —

|
X(t1)

|
X(tk)

Xorig —

X(t1)

|
X(tg)

30



Lift & Learn [gian, kramer, Peherstorfer & W., 2019]

: 1. Generate full state trajectories (snapshots)
Learn_lng a (from high-fidelity simulation)
low-dimensional 2. Transform snapshot data to get lifted snapshots

model (analyze the PDEs to expose system
polynomial structure)

Using only snapshot Xorig — X Xorig — X

data from the

original high-fidelity
model (non-intrusive)
but using variable
transformations to
expose and exploit
structure




Learning a
low-dimensional
model

Using only snapshot

data from the

original high-fidelity
model (non-intrusive)
but using variable
transformations to
expose and exploit
structure

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories

X=VIwW'

32



Learning a
low-dimensional
model

Using only snapshot

data from the

original high-fidelity
model (non-intrusive)
but using variable
transformations to
expose and exploit
structure

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1.

Generate full state trajectories (snapshots)
(from high-fidelity simulation)

Transform snapshot data to get lifted snapshots
Compute POD basis from lifted trajectories

Project lifted trajectories onto POD basis, to
obtain trajectories in low-dimensional POD
coordinate space

X=VTX

33



Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]
1. Generate full state trajectories (snapshots)

Leaming a (from high-fidelity simulation)
low-dimensional 2. Transform snapshot data to get lifted snapshots
model 3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to
Using only snapshot obtain trajectories in low-dimensional POD
data from the coordinate space
original high-fidelity 5. Solve least squares minimization problem to
model (non-intrusive) infer the low-dimensional model

but using variable
transformations to
expose and exploit in
structure ABH

|XTAT + (X®X) AT+ UTBT - X7|

34



Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]
1. Generate full state trajectories (snapshots)

Leaming a (from high-fidelity simulation)
low-dimensional 2. Transform snapshot data to get lifted snapshots
model 3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to
Using only snapshot obtain trajectories in low-dimensional POD
data from the coordinate space
original high-fidelity 5. Solve least squares minimization problem to infer
model (non-intrusive) the low-dimensional model

but using variable

transformations to

expose and exploit

structure — convenience of black-box learning +

rigor of projection-based reduction +
structure imposed by physics

35

Under certain conditions, recovers the intrusive POD
reduced model




1 Scientific Machine Learning

Additive
Manufacturing

3 Conclusions & Outlook Lift & Learn reduced models for a
highly nonlinear solidification process

2 Lift & Learn



T(0,t) =T (¢,t)0.4

_ 9

0 ox

r=F{

=0

solidified layer

/

powder reservoir powder bed

/ 7  object being
’ fabricated

powder
scraper

powder delivery piston
fabrication piston

https://www.bintoa.com/powder-bed-fusion



Modeling solidification In

additive manufacturing Pt Lo=v. (K (6)VT)
_|_ — .

a’p = EA¢ —p' (¢) — ¢ (T, ¢)
Training data
* 800 snapshots collected over time t = [0, 0.02]

« Parameters: ¥ =1,a =3, =0.1,6 = 0.9,
Thet =10,L=05,y=2.0,K,=1,K; =0.1

« Variables used for learning cubic ROMs
X = [T' (P' K' D, p,' P”,mo,Y]



FOM ROM 0 OzAbsolute error

0.02
. 0.04
Lift & Learn z 04
*a 0.3 0.03
reduced model 5 ~ oo o T L
performance g i L
= 0 .
00 0.1 0
« r=23P0OD
basis functions w002 [ 002 002 0.04
P
» 16 modes for £ 32 gi 0
differential egs + g ~ool ., 001 . 001 0.02
/ mOde_S for g 0.2 0.2 0.01
algebraic egs = i o o
0 0.5 1 0 : :
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Lift & Learn
reduced model
performance

« r=32P0OD
basis functions

» 22 modes for
differential egs +
10 modes for
algebraic eqgs

FOM
0.02 y

(«P)
h ‘ .
=
)
2 ;
@ *=0.01 :
e,
qE) )
=

0 -0.

0 ’
. 002
(«P]
st
<P}
=
(1
|
< *0.01
(=
(-
(<)
=)
o
- 0

0 0.5 1

X

0.3

0.2 0.01
0.1

0

-0.1 0

0.02 0.02
1 1
0.8 0.8
0.6 0.6
0.01 0.01
0.4 0.4
0.2 0.2
0 0
0 0
0 0.5 1

Absolute error x107

10

8
6
4
2

0.03
0.025
0.02
0.015
0.01
0.005
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1 Scientific Machine Learning

_ Rocket Engine
2 Lift & Learn COmbUSthn

3 Conclusions & Outlook Lift & Learn reduced models for a
complex Air Force combustion problem



- Oxidizer Manifold

Modeling a single injector of
a rocket engine combustor

» Spatial domain (2D) discretized into 38,523 cells

= Injector Post

= Injector Element

il . ] kg
» Oxidizer input: 0.37 = of 42% 0, / 58% H,0 L Combustion Chamber

° i ; E
Fuel input: 5.0 3 of CH, . Exit Throat

» Forced by a back pressure boundary condition at exit throat

PV Py ]
puvs 4+ p PULUy Ts Tay
PUL Uy ;J't!:‘;_ +p Ty: Tyy
1V- P E v DU, ;+ pu, E + poy | 7 _ | Texte + Tyaty , ;_ TeyVz + TyyUy — ;5 =

s TTL ";II

pUzY7 pryYi 1 —J1y

, T

U }



Modeling a single injector of a
rocket engine combustor

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
X (meters)

Training data Test data

* 1 ms of full state solutions generated using "
Air Force GEMS code (~200 hours CPU time) ;‘Ac\)(:lcrhaoonrﬁ!tc?r rl?)f;a(\)t];odnzta at

 Timestep At = 10~’s; 10,000 total snapshots (20,000 timesteps)

« Variables used for learning ROMs
x=[p u v 1/p pYeu, PYo, PYco, PYH,0]
makes many (but not all) terms In
governing equations quadratic

e Snapshot matrix X € R398184x10,000

43



Performance
of learned
guadratic
ROM

Pressure time traces
at monitor location 1

Basis size r = 24

0.025

0.02
;f 0.015
7]
E 001
> 0.005
0.06 004 002 0 002 004 006 008 0.1
X (meters)
Training Test
[ L J
x 10°
---- ROM,r=24
13| — rrue
o l.27
—
=
A
()
—
11
1.01
0.0150 0.0160 00170  0.0180

Time (S) 44



Performance
of learned
guadratic
ROM

Pressure time traces
at monitor location 1

Basis size r = 29

Pressure

0.025

0.02
;—f 0.015
7]
E 001
> 0.005
0.06 004 002 0 002 004 006 008 0.1
X (meters)
Training Test
x 108
-- ROM,r=29
13] TRUE
' ~.
1.2 : .
1.17
1.01
0.0150 0.0160  0.0170  0.0180

Time (S) 45



Pressure Temperature
True P

Pa

1.26E+06
1.22E+06

1.18E+06
1.14E+06
11E+06

1.08E+06

Predicted

r = 29 POD modes

Pa

1.26E+06
1.22E+06
1.18E+06
1.14E+06
11E+06

1.06E+06

Relative error




True

Concentration

. 01

0.08

Predicted

r = 29 POD modes

Concentration ‘
Concentration

a7



1 Scientific Machine Learning

< SIS EEA Conclusions &
3 Conclusions & Outlook OUtI OO k

What future for model reduction?



| Scientific Machine Learning

What role for model reduction?
reduce the cost of training | foundational shift in ML perspectives

Integrate
heterogeneous, noisy
& incomplete data

Embed domain
knowledge

Get predictions with
quantified
uncertainties

Respect physical Bring interpretability
constraints to results

49



Scientific Machine Learning

Learning from data through the lens of models is a way
to exploit structure in an otherwise intractable problem

Integrate
heterogeneous, noisy
& incomplete data

Embed domain
knowledge

Get predictions with
quantified
uncertainties

Respect physical Bring interpretability
constraints to results

50



Scientific Machine Learning

What future for model reduction?

Rigor

Issuing predictions with certified uncertainty for high-consequence applications

Relevance
towards real-world scientific and engineering applications

Accessibility

accessible algorithms, community software, benchmark problems

Impact & adoption
depend on all of the above

51



decisions

building the mathematical foundations and computational methods to
enable design of the next generation of engineered systems

.ODEN.UTEXAS.EDU

FOR COMPUTATIONAL ENGINEERING & SCIENCES



